

1 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Critical Issue Affects Privacy of 1-Billion Facebook Messenger
Users; Potentially Affects Millions of Other Websites

An estimated 1.8-billion active monthly users trust Facebook to keep their accounts,
user details and communications secure. On the one hand, the social network is based
on sharing: users post some 350-million photos daily and nearly 300-thousand statuses
per minute.

On the other hand, there is Facebook Messenger, one of the network’s most popular
features, with 1-billion active monthly users. Unlike photo and status features designed
specifically for sharing and publishing, the power of Messenger is in the ability to
communicate privately.

In this post, we will describe a severe security vulnerability found on Facebook, which
also potentially affects millions of websites using origin null restriction checks,
threatening user privacy and opening site visitors up to malicious entities. The hack,
dubbed “Originull,” enables an attacker to access and view all of a user’s private chats,
photos and other attachments sent via Facebook Messenger. The issue was discovered
and reported to Facebook by team researcher Ysrael Gurt.

The ‘Untechnical’ Explanation
The vulnerability discovered is a cross-origin bypass-attack which allows the hacker to
use an external website to access and read a user’s private Facebook messages.
Normally, the browser protects Messenger users from such occurrences by only
allowing Facebook pages to access this information. However, Facebook opens a
“bridge,” in order to enable “subsites” of Facebook.com to access Messenger
information. A vulnerability in the manner in which Facebook manages the identity of
these subsites makes it possible for a malicious website to access private Messenger
chats.

For example, if the user opens a website to which the hacker has directed them (via a
malicious ad, a security issue, or the hacker’s own website), the hacker can then see all
the Facebook Messenger chats, photos and other attachments which the user sends or

2 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

receives. This happens even if the user sends the messages by way of another
computer, or from their personal mobile device!

Image 1: The chat appears on the BugSec website. The user ID is shown to the left.

The Technical Explanation
This is a deeper technical explanation of the issue above.
Facebook Messenger chats are managed from a separate server located at the address:
{number}-edge-chat.facebook.com. The chat itself runs on the domain
www.facebook.com.

Communication between the JavaScript and the server is done by XML HTTP Request
(XHR).

In order to access the data that arrives from 5-edge-chat.facebook.com in JavaScript,
Facebook must add the “Access-Control-Allow-Origin” header with the caller’s origin,
and the “Access-Control-Allow-Credentials” header with “true” value, so that the data is
accessible even when the cookies are sent.

http://www.facebook.com/

3 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Image 2: The original request.

So far, this appears to be a normal CORS process. In order to prevent other sites from
accessing the data, Facebook checks the origin header. If the request came from an
unauthorized origin, the server returns 400 with the value “badorigin” in the header “x-
fb-chat-failure-reason.”

Image 3: Request from a different origin.

4 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Now for the good stuff: Facebook also allows normal GET requests to the chat domain.
But normal GET requests do not come with an origin header. The origin header is a
special header sent by the browser only with XHR requests.

Thus, when the server receives a GET request, it does not include the “origin” header. In
many development languages, nonexistent headers are represented by the “null” value.
If Facebook expected to receive “null” in the “origin” header, it would not block
requests from this “origin.”

Most likely, the filtering mechanism is separated from the responder mechanism, and
the responder assumes that the value in the “origin” header is allowed, because if not,
the filter would already have dropped the request. This development design allows
Facebook to add authorized origins by changing code in one position only.

In conclusion, the “null” origin passes the filter check, allowing it to pass as a normal
“GET” request. The responder took the value of the “origin” header from the request,
and placed it as the value for “Access-Control-Allow-Origin” header in the response.

Image 4: Request without origin.

In this manner, we ascertained that were we to send a request from the page with a
“null” origin, we would most likely get the “Access-Control-Allow-Origin” header in
response to the “null” origin.

5 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

First, we tested this assumption with a “burp” – a tool enabling us to modify every
request for information. When we sent the request with the origin “null,” Facebook
responded with a “null” value on “Access-Control-Allow-Origin.”

This meant that if we could cause the browser to send “null” in the “origin” header,
we would get a “null” value in the “Access-Control-Allow-Origin.”

Image 5: Request with “null” origin.

In our testing, we also found that it was possible to use the data scheme in order to
send requests with the origin “null.” When a data scheme is used, the browser sets the
origin to “null” for security purposes.

6 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Image 6: The example code.

Image 7: The final HTML.

Image 8: The HTML in Firefox.

7 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Image 9: The HTML in Chrome.

Thus, based on data scheme testing, and our knowledge of Facebook handling
methodology, we could produce a valid attack on Messenger chat users.

Some Background on the Facebook Chat API
Facebook uses a continually repeated XHR request to the server to receive newly arrived
messages. The server responds only when a message arrives, or at timeout. Using this
method means that there is always an XHR request waiting for a server response. When
the server responds to a request, JavaScript code opens a new request to the server.

Image 10: Server response at timeout.

8 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Image 11: Server response for a new message.

To ensure that the messages arrive in the correct order, every request has a sequence
number (represented by “seq” in the requests).

The request parameters are built using the following steps:
1. Every request is part of a “pool.”
The right “pool” value is sent as a response to an empty request.

Image 12: Receiving the “pool” value.

9 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

2. Within the “pool,” every request is done with a sequence number, beginning with 0.
With the response, the server also sends the next sequence number.

Image 13: The server responds with the messages. Pay attention to the request sequence
number (2), and the response sequence number (3).

Putting this together, we created the following code. This code communicated with the
Facebook API, received the messages, presented them on the page, and sent them to
BugSec server.

Image 14: The final code.

10 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

This code was converted to the equivalent Base64 string, and inserted as the target of
the Refresh on the meta tag.

Image 15: The full payload.

When the victim entered the malicious page, the code began listening to his Facebook
Messenger chats, and sent them to BugSec server.

Image 16: The code sends the messages to the BugSec server.

11 | P a g e www.bugsec.com | www.cynet.com | 2016 ALL RIGHTS RESERVED

Image 17: The chat appears on BugSec website. The user ID is shown on the left.

Conclusion
The vulnerability was reported to Facebook through its Bug Bounty program. They
responded quickly, and had fixed the vulnerability within several days.

